

PROGRAMME

Stranded Assets and the Environment 30th September 2015 Vienna, Austria

Ben Caldecott Founder & Director, Stranded Assets Programme Smith School of Enterprise and the Environment University of Oxford

Email: ben.caldecott@smithschool.ox.ac.uk Twitter: @bencaldecott

PROGRAMME

What are stranded assets in the environmental context?

- Unanticipated or premature write-down, devaluation or become liability.
 - Creative destruction
 - Technology and regulation
 - Extreme events
- Confluence of new risks may make some assets more prone to stranding.
 - Significant and accelerating
- Rarely understood or considered in decision making, especially amongst investors.
- Significant benefits associated with managing these risks.

Environmental challenges (e.g. climate, water, biodiversity) **Changing resource landscapes** (e.g. shale, fertilisers)

New government

regulations

(e.g. carbon pricing,

air pollution regulation)

Litigation & changing statutory interpretations (e.g. directives, state-aid, carbon liability, fiduciary duty)

> Falling clean technology costs (e.g. solar and onshore wind)

Evolving social norms (e.g. divestment) and consumer preferences

PROGRAMME

Climate change

© 2014 Münchener Rückversicherungs-Gesellschaft. Geo Risks Research – As at Januarv 2014

PROGRAMME

UNIVERSITY OF OXFORD

Climate change

Government regulations

- Over the past decade climate change regulations globally have increased rapidly.
- According to Globe International, 88% of global CO2 emissions come from 66 countries.
- These countries currently have 487 laws pertaining to climate change, up from <100 in 2002, and <40 in 1997.

Source: Globe International, Globe Climate Legislation Study 4th edition

PROGRAMME

New technologies – clean vs fossil generation investment (bn \$)

PROGRAMME

New technologies - LCOE Q2 2013 vs H1 2014, \$/MWh

Source: Bloomberg New Energy Finance

PROGRAMME

UNIVERSITY OF **OXFORD**

New technologies – EU Utility Share Prices

Source: Bloomberg

2000

PROGRAMME

UNIVERSITY OF OXFORD

Technologies move faster than projections

2010

Global share of renewables in electricity generation 35% 30% 25% 20% 15% 10% WEO 2004 WEO 2007 -WEO 2013 5% 0%

Source: OECD analysis based on projections of IEA World Energy Outlooks in Reference Scenarios of WEO 2004, 2007 and 2008, and New Policies Scenarios in WEO 2013.

2030

2040

2020

PROGRAMME

The three waves of a divestment campaign

e.g., In the 1980s, public health organizations including the American Public Health Association, American Cancer Society, and World Health Organization found tobacco products to be contrary to their missions and therefore divested.

Religious groups and industry-related public organizations

(1)

e.g., In 1980, Protestant and Roman Catholic churches pledged to disinvest \$250 million from banks with ties to South Africa.

e.g., In May 1990, Harvard President Derek Bok announced that the university had divested nearly \$58 million of investments in tobacco companies, stating that "the divestment was prompted by recognition of the dangers of smoking and concern over aggressive marketing tactics to promote smoking among teenagers and in thirdworld countries."

Universities, cities and select public institutions

e.g., In 1986 and 1987, Harvard and Columbia university endowments sold off shares in companies with operations in South Africa. The Bank of Boston and Chase Manhattan stopped new loan activities in **South Africa**. U.S. enacted the Comprehensive Anti-Apartheid Act of 1986. Wider market

3

e.g., In the mid-1990s, several U.S. public pension funds began to divest **tobacco** holding due in part to the 1994 decision by the U.S. Food and Drug Administration to push toward increased regulation of the tobacco industry, which created uncertainty about future financial performance of tobacco stocks. Mississippi led a suit against the tobacco industry to retrieve Medicaid funds for tobacco-related illness caused in the state paving way for further state-led litigation. Massachusetts enacted legislation requiring complete divestment and barring future holdings.

e.g., In 1988, U.S. pension funds and universities continued to divest and the campaign became global: Britain's Barclay's Bank divested and stopped lending; some Japanese and other foreign companies began to halt operations in **South Africa**.

PROGRAMME

Stranded assets – A developing literature

'Unburnable Carbon' – significant attention, what impacts?

• Implications of "carbon bubble" imposed by climate policy for the value of fossil-fuel industry has inspired debate

Nuanced perspective? Components of value, sectoral and geographic approaches

- Acknowledgement of environment-related risks
- Increasing involvement of actors: Banks, Analysts, Universities, IGOs
- Examination of more detailed risk, impact, and response profiles
- Shift beyond equity to examining debt, capex, cost of capital
- Differentiation among assets, projects, products – move to cost-curve approach

Mixed actions and responses across the investment chain

SMITH SCHOOL OF ENTERPRISE

AND THE ENVIRONMENT

- Increasing public awareness and concern in different countries/regional markets
- Development of fossil-fuel divestment campaigns in the US and EU
- Shareholder resolutions, notable divestment actions, pressure for increased performance

PROGRAMME

SMITH SCHOOL OF ENTERPRISE

'Energy Policy in the Greenhouse: From Warming Fate to Warming Limit' by Florentin Krause, Wilfrid Bach, and Jon Koomey (September 1989)

5. Allowable depletion of fossil fuel resources

A 300 btC budget means major restrictions on the use of global fossil resources. The quantitative implications for alternative fuel mixes can be seen from the data in Table I.4.3. At the 1985 mix of fuels, the consumption of fossil resources would be limited as follows:

- no more than 64 percent of total oil resources;
- no more than 47 percent of conventional gas resources;
- no more than 22 percent of the cheaper coal resources.

These figures clash with the conventional assumption that all conventional oil and gas resources would probably be consumed before a major shift away from fossil fuels would occur. Our analysis suggests that:

 climate stabilization requires keeping significant portions of even the world's conventional fossil resources in the ground.

Such a requirement is a stark contradiction to all conventional energy planning and illustrates the magnitude of the greenhouse challenge.

PROGRAMME

Fossil Fuels – not just about listed reserves

•Upstream/Production

- Exploration and production
- Most work on stranded assets focused on listed reserves in London and NYC

•Midstream/Transmission

- Pipelines and Transmission
- Redundant infrastructure e.g. Australia and grid reinforcements

•Downstream/Generation

- Refineries
- Generation assets
- Subcritical coal most at risk (carbon, air, and water)

•Other sectors too!

- Agriculture
- Property
- Transport
- Etc etc

UNIVERSITY OF OXFORD

PROGRAMME

Upstream: Environment-related factors changing demand

- Carbon pricing and trading
- Coal to liquids and chemicals
- Coal quality
- Energy intensity and efficiency
- Environmental concern
- Gas and shale gas
- Iron and steel sector
- Local pollution
- Non-fossil fuel energy and electricity
- Water

- Value of mineral resources in the ground
- Value of infrastructure investments

What is exposed?

- Revenue from mining royalties and company tax; losses from joint ventures and under-utilised or unused infrastructure
- Publically-listed coal intensive companies; companies exposed to the supply chain – infrastructure and transport

Who is exposed?

SMITH SCHOOL OF ENTERPRISE AND THE ENVIRONMENT

- Investors and employees in coal companies and dependent companies
 - State and federal governments
- Towns and cities exposed to significant mining sector employment

SMITH SCHOOL OF ENTERPRISE AND THE ENVIRONMENT

PROGRAMME

Midstream: Energy demand and "poles and wires"

Source: Australian Energy Market Operator, Reserve Bank of Australia, Bloomberg New Energy Finance

- Retail prices for electricity in Australia have nearly doubled since 2007.
- By a large margin greatest source of increase has been the network charges for transmitting and distributing.
- Over-engineered given falling demand and encouraging death spiral phenomenon.

PROGRAMME

Downstream: Subcritical coal

•Coal provides 40% of the world's electricity, with 1,617 GW of global capacity. Of this capacity, 75% is subcritical, 22% supercritical, and 3% ultra-supercritical.

•Average subcritical coal-fired power station (SCPS) emits 75% more carbon pollution than an average advanced ultra-supercritical - the most up-to-date form of coal-fired power station - and uses 67% more water. More vulnerable to concerns about climate change, air pollution, and water stress.

Generation Efficiency	Carbon Intensity	Air Pollution	Water Stress
Old Inefficient Subcritical	100	100	100
Old Efficient Subcritical	84	84	85
New Subcritical	68	68	70
Supercritical	57	57	60
Ultra-Supercritical	52	52	55
Advanced Ultra-Supercritical	48	48	51

Note: Indicated levels of environmental effects based off of ceteris paribus generating conditions for a closed-cycle wet-cooled plant. Water stress levels based off of EPRI (2008).¹³

•To limit global emissions to a level consistent with a 2°C future, the IEA estimates that it will be necessary to close a quarter (290 GW) of subcritical generation worldwide by 2020.

Subcritical coal accounted for 8.6 GtCO2 of emissions globally in 2009. For context, in 2010 annual gross greenhouse gas emissions globally totalled ~50 GtCO2-equivalent.

PROGRAMME

UNIVERSITY OF OXFORD

Top 20 corporate portfolios highest carbon intensity

Rank (Rank by total SCPS MWh)	Portfolio/Company	Country	State owned	Listed	Number of SCPSs	Total SCPS MWh	SCPS portfolio mean carbon intensity (kg CO2/MWh)†
1 (84)	Neyveli Lignite Corp Ltd	India	YES	YES	2	16,725,380	1,447
2 (93)	Mp Power Generating Co Ltd	India	YES	NO	3	14,472,000	1,342
3 (44)	GDF Suez	France	NO	YES	10	30,125,526	1,279
4 (64)	Kazakhmys Plc	Kazakhstan	NO	NO	4	22,748,920	1,277
5 (74)	West Bengal Power Dev Corp	India	YES	NO	5	18,568,000	1,269
6 (81)	Ogk-2 (second Generation Co)	Russia	NO	NO	4	17,067,700	1,253
7 (33)	Maharashtra State Power Gen Co	India	YES	NO	7	37,556,000	1,243
8 (96)	Electricity Generating Authority of Thailand	Thailand	YES	NO	4	13,631,406	1,240
9 (87)	Termoelectrica	Romania	YES	NO	17	15,257,687	1,226
10 (56)	Rao Ues Russia	Russia	YES	NO	23	25,275,890	1,222
11 (48)	Cez As	Czech Republic	YES	YES	13	29,522,734	1,220
12 (82)	East China Electric Power Corp	China	YES	NO	8	17,035,085	1,186
13 (99)	Damodar Valley Corp	India	YES	NO	5	13,048,590	1,178
14 (85)	Pt Indonesia Power - Suralaya	Indonesia	YES	NO	1	16,644,000	1,170
15 (78)	Westar Energy Inc	United States	NO	YES	3	17,637,600	1,155
16 (16)	North China Grid Co Ltd	China	YES	NO	29	72,872,466	1,154
17 (51)	Guizhou Electric Power Co	China	YES	NO	9	27,641,800	1,149
18 (36)	Polska Grupa Energetyczna	Poland	YES	YES	2	36,020,000	1,141
19 (95)	Xishan Coal And Electricity	China	YES	YES	3	13,660,800	1,140
20 (20)	State Grid Power Corp	China	YES	NO	28	58,341,956	1,136

PROGRAMME

Top 20 corporate portfolios highest PM 2.5 air pollution

Rank (Rank by total SCPS MWh)	Portfolio/Company	Country	State owned	Listed	Number of SCPSs	Total SCPS MWh	SCPS portfolio mean 100km radius PM 2.5 levels
1 (49)	State Power Central Co	China	YES	NO	6	28,836,060	75
2 (16)	North China Grid Co Ltd	China	YES	NO	29	72,872,466	66
3 (10)	China Resources Power Holdings	China	YES	YES	29	97,645,759	66
4 (20)	State Grid Power Corp	China	YES	NO	28	58,341,956	61
5 (53)	Shenergy Company Ltd	China	YES	YES	3	27,240,107	60
6 (82)	East China Electric Power Corp	China	YES	NO	8	17,035,085	59
7 (80)	Punjab State Electricity Board	India	YES	NO	3	17,197,000	53
8 (54)	Citic Pacific Ltd	China	YES	YES	6	26,846,285	52
9 (8)	China Power Investment Corp	China	YES	NO	41	129,003,080	51
10 (2)	Huadian Group	China	YES	YES	69	284,448,220	50
11 (52)	Beijing Energy Invest Holding	China	YES	NO	4	27,519,000	48
12 (95)	Xishan Coal And Electricity	China	YES	YES	3	13,660,800	48
13 (70)	Uttar Pradesh Rajya Vidyut	India	YES	NO	5	21,017,800	47
14 (4)	China Datang Corp	China	YES	YES	52	211,691,720	46
15 (1)	China Huaneng Group	China	YES	YES	66	320,928,260	44
16 (74)	West Bengal Power Dev Corp	India	YES	NO	5	18,568,000	43
17 (3)	China Guodian Group	China	YES	YES	65	267,433,170	43
18 (51)	Guizhou Electric Power Co	China	YES	NO	9	27,641,800	43
19 (83)	Rajasthan Rv Utpadan Nigam	India	YES	NO	4	16,837,000	42
20 (99)	Damodar Valley Corp	India	YES	NO	5	13,048,590	41

PROGRAMME

SMITH SCHOOL OF ENTERPRISE

Top 20 corporate portfolios greatest water stress

Rank (Rank by total SCPS MWh)	Portfolio/Company	Country	State owned	Listed	Number of SCPSs	Total SCPS MWh	SCPS portfolio mean water stress
1 (52)	Beijing Energy Invest Holding	China	YES	NO	4	27,519,000	100.00%
2 (79)	Origin Energy	Australia	NO	YES	1	17,482,000	100.00%
3 (95)	Xishan Coal And Electricity	China	YES	YES	3	13,660,800	100.00%
4 (97)	Intermountain Power Agcy	United States	NO	NO	1	13,556,000	100.00%
5 (83)	Rajasthan Rv Utpadan Nigam	India	YES	NO	4	16,837,000	98.72%
6 (80)	Punjab State Electricity Board	India	YES	NO	3	17,197,000	92.22%
7 (84)	Neyveli Lignite Corp Ltd	India	YES	YES	2	16,725,380	91.51%
8 (16)	North China Grid Co Ltd	China	YES	NO	29	72,872,466	87.97%
9 (30)	Saudi Electricity Co	Saudi Arabia	YES	YES	78	41,446,725	86.32%
10 (42)	Korea Southern Power (kospo)	South Korea	YES	YES	2	31,095,500	84.43%
11 (82)	East China Electric Power Corp	China	YES	NO	8	17,035,085	76.79%
12 (64)	Kazakhmys Plc	Kazakhstan	NO	NO	4	22,748,920	72.08%
13 (85)	Pt Indonesia Power - Suralaya	Indonesia	YES	NO	1	16,644,000	68.76%
14 (61)	Gujarat Urja Vikas Nigam Ltd	India	YES	NO	8	23,366,839	68.56%
15 (90)	J-power	Japan	NO	YES	4	14,642,370	66.81%
16 (26)	Xcel Energy	United States	NO	YES	11	49,584,827	66.47%
17 (91)	Delta Electricity	Australia	YES	NO	2	14,633,400	65.49%
18 (49)	State Power Central Co	China	YES	NO	6	28,836,060	64.95%
19 (4)	China Datang Corp	China	YES	YES	52	211,691,720	64.24%
20 (76)	Tamil Nadu Electricity Board	India	YES	NO	5	18,136,518	63.72%

PROGRAMME

Why do stranded assets matter?

- Size of potential VaR and risk at variety of levels, sectors and geographies
 - e.g. listed and unlisted, equity, debt, sovereign, business models, and development strategies
- Stranded assets are beginning to have real impacts today
 - Firms in many sectors have been left with significant asset impairments and write-downs, necessitating changes in strategy
 - Asset stranding is occurring in unexpected and counterintuitive ways in some sectors
 - Domino effect and correlation
 - Asset stranding may increase the costs of achieving sustainable and resilient economies, for firms, governments, and society
 - Potential negative impacts on efficient transitions to sustainable business models, the ability of governments to facilitate effective low-carbon transitions, and the stability of the global economy and financial system

PROGRAMME

Criticisms and counter arguments

- "Short term valuations insulate investors from these long term risks."
 - **Counter argument**: Some environment-related risk factors are actually quite immediate, with complex relationships emerging.
- *"Markets already appropriately value environmental risks."*
 - **Counter argument**: Vast quantities of evidence show that global financial markets are mispricing or ignoring these risk factors.
- *"This is just the same as creative destruction elsewhere in the economy, why care?"*
 - **Counter argument**: Confluence of related risk factors is significant; drivers, consequences and responses to such stranding are still not understood.
- *"Even if there are stranded assets, markets will have time to readjust."*
 - **Counter argument**: Flexibility depends on time horizons; exits always appear bigger than they actually are and liquidity could be a major problem under certain scenarios.

Systemic risk?

•Levels of exposure across different parts of the financial and economic systems likely to be very significant.

• Listed equities are the only area where we currently have ok data.

•Bank of England tests:

- Exposures of financial institutions to carbon-intensive sectors are large relative to overall assets;
- Impact of policy and technology is not already being priced into the market, either through lower expected returns or higher risk premia;
- Subsequent correction would not allow financial institutions to adjust their portfolios in an orderly manner.

•What could central bankers and financial regulators do?

• Track exposure; stress testing; macro-prudential tools to deflate exposure.

PROGRAMME

- Need to understand whether risks are material and when they might be material.
- Monitor, measure, track.
- Scenarios and stress testing.
- Time horizons, sequencing and correlations.
- Quantitative vs qualitative (risk vs uncertainty).
- Embed in credit risk/due diligence processes.

